

Answer all the questions:

1. (a) Let $\varphi: \mid a, b] \times[c, d] \rightarrow \mathbb{C}$ be a continuous function and define $g:[c, d] \rightarrow \mathbb{C}$ by $g(t)=\int_{a}^{b} \varphi(s, t) d s$ then prove that g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times[c, d]$ then prove that g is continuously differentiable and $g^{\prime}(t)=\int_{a}^{b} \frac{\partial \varphi(s, t)}{\partial t} d s$.

OR

(b) Let G be a connected open set and let $f: G \rightarrow \mathbb{C}$ be an analytic function. Then prove that $f \equiv 0$ if and only if there is a point a in G such that $f^{(n)}(a)=0$ for each $n \geq 0$.
(c) (i) Let f be analytic in $B(a ; R)$ then prove that $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $|z-a|<R$ where $a_{n}=\frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence $\geq R$.
(ii) Let G be an open subset of the plane and $f: G \rightarrow \mathbb{C}$ an analytic function. If γ is a closed rectifiable curve in G such that $n(\gamma ; w)=0$ for all w in $\mathbb{C}-G$, then prove that for a in $G-\{\gamma\}, n(\gamma ; a) f(a)=$ $\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z$.

OR

(d)State and prove homotopic version of Cauchy's theorem.
2. (a) State and prove Schwarz's lemma.

OR

(b) Define convex function and prove that a function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if $A=$ $\{(x, y): a \leq x \leq b$ and $f(x) \leq y\}$ is convex.
(c) Let $a<b$ and let G be a vertical strip $\{x+i y: a<x<b\}$. Suppose $f: G^{-} \rightarrow \mathbb{C}$ is continuous and f is analytic in G. If we define $M:[a, b] \rightarrow \mathbb{R}$ by $M(x)=\sup \{|f(x+i y)|\}$, where $-\infty<y<\infty$ and $|f(z)|<B$ for all z in G, then prove that $\log M(x)$ is a convex function.
(15)

OR

(d) State and prove Arzela Ascoli theorem.
3. (a) If $\operatorname{Re}\left(z_{n}\right)>-1$, then prove that $\sum \log \left(1+z_{n}\right)$ converges absolutely if and only if $\sum z_{n}$ converges absolutely.
(b) With usual notation, Show that $\gamma=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)-\log n\right]$.
(c) (i) State and prove Bohr-Mollerup theorem.
(ii) Show that $\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$.

OR

(d)(i) For $\operatorname{Re} z>1$ then prove that $\zeta(z) \Gamma(z)=\int_{0}^{\infty}\left(e^{t}-1\right)^{-1} t^{z-1} d t$.
(ii) State and prove Euler's theorem.
4. (a) State and prove Poisson Jensen's formula.

OR

(b) Let f be an entire function of finite order, then prove that f assumes each complex number with one possible exception.
(c) State and prove Mittag- Leffler's theorem.

OR

(d) State and prove Hadamard factorization theorem.
5. (a) If $\wp(z)=\frac{1}{z^{2}}+\sum_{w \neq 0}\left(\frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}\right)$, prove that the series in it is convergent.

OR

(b) Show that any elliptic function with periods w_{1} and w_{2} can be written as $f(z)=c \prod_{k=1}^{n} \frac{\sigma\left(z-a_{k}\right)}{\sigma\left(z-b_{k}\right)}$.
(c) (i)Define an elliptic function and prove that the sum of the residues of an elliptic function is zero.
(ii) Show that $\zeta(z)=\frac{1}{z}+\sum_{w \neq 0}\left(\frac{1}{(z-w)}+\frac{z}{w^{2}}+\frac{1}{w}\right)$ and it is an odd function. Also show that $\zeta^{\prime}(z)=$ $-\wp(z)$.

OR

(d) (i) State and prove Legendre's relation.
(ii) Prove that $\frac{\wp^{\prime}(z)}{\wp(z)-\wp(u)}=\zeta(z-u)+\zeta(z+u)-2 \zeta(z)$.

