LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – MATHEMATICS SECOND SEMESTER – APRIL 2014 MT 2814 - COMPLEX ANALYSIS

Date : 05/04/2014 Time : 09:00-12:00 Dept. No.

Max.: 100 Marks

Answer all the questions:

1. (a) Let $\varphi: [a,b] \times [c,d] \to \mathbb{C}$ be a continuous function and define $g: [c,d] \to \mathbb{C}$ by $g(t) = \int_a^b \varphi(s,t) ds$ then prove that g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a,b] \times [c,d]$ then prove that g is continuously differentiable and $g'(t) = \int_a^b \frac{\partial \varphi(s,t)}{\partial t} ds$. (5)

OR

(b) Let G be a connected open set and let $f: G \to \mathbb{C}$ be an analytic function. Then prove that $f \equiv 0$ if and only if there is a point a in G such that $f^{(n)}(a) = 0$ for each $n \ge 0$. (5)

(c) (i) Let f be analytic in B(a; R) then prove that $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R where $a_n = \frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence R.

(ii) Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. If γ is a closed rectifiable curve in G such that $n(\gamma; w) = 0$ for all w in $\mathbb{C} - G$, then prove that for a in $G - \{\gamma\}$, $n(\gamma; a)f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz$. (8+7)

OR

(d)State and prove homotopic version of Cauchy's theorem.	(15)
2. (a) State and prove Schwarz's lemma.	(5)

OR

(b) Define convex function and prove that a function $f:[a, b] \to \mathbb{R}$ is convex if and only if $A = \{(x, y): a \le x \le b \text{ and } f(x) \le y\}$ is convex. (5)

(c) Let a < b and let G be a vertical strip $\{x + iy: a < x < b\}$. Suppose $f: G^- \to \mathbb{C}$ is continuous and f is analytic in G. If we define $M: [a, b] \to \mathbb{R}$ by $M(x) = \sup\{|f(x + iy)|\}$, where - < y < and |f(z)| < B for all z in G, then prove that $\log M(x)$ is a convex function.

(15)

OR

(d) State and prove Arzela Ascoli theorem.(15)3. (a) If $Re(z_n) > -1$, then prove that $\log(1 + z_n)$ converges absolutely if and only if z_n converges absolutely.(5)

OR	
(b) With usual notation, Show that $\gamma = \lim_{n \to \infty} \left[\left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) - \log n \right].$	(5)
(c) (i) State and prove Bohr-Mollenup theorem.	
(ii) Show that $\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)$.	(8+7)
OR	
(d)(i) For $\operatorname{Re} z > 1$ then prove that $\zeta(z)\Gamma(z) = \int_0^\infty (e^t - 1)^{-1} t^{z-1} dt$.	
(ii) State and prove Euler's theorem.	(7+8)
4. (a) State and prove Poisson Jensen's formula.	(5)
OR	
(b) Let f be an entire function of finite order, then prove that f assumes each end of the function of finite order, then prove that f assumes each end of the function	ch complex number with one
possible exception.	(5)
(c) State and prove Mittag- Leffler's theorem.	(15)
OR	
(d) State and prove Hadamard factorization theorem.	(15)
5. (a) If $(z) = \frac{1}{z^2} + \sum_{w \neq 0} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right)$, prove that the series in it is converge	gent. (5)
OR	
(b) Show that any elliptic function with periods w_1 and w_2 can be written	as $f(z) = c \prod_{k=1}^{n} \frac{\sigma(z-a_k)}{\sigma(z-b_k)}$.
(5)	
(c) (i)Define an elliptic function and prove that the sum of the residues of	an elliptic function is zero.
(ii) Show that $\zeta(z) = \frac{1}{z} + w \neq 0 \left(\frac{1}{(z-w)} + \frac{z}{w^2} + \frac{1}{w} \right)$ and it is an odd funct	ion. Also show that $\zeta'(z) =$
-(z).	(7+8)
OR	

(d) (i) State and prove Legendre's relation.

(ii) Prove that
$$\frac{\wp'(z)}{(z)-\wp(u)} = \zeta(z-u) + \zeta(z+u) - 2\zeta(z).$$
 (8+7)